skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moss, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report our findings on a spectroscopic survey of seven unresolved DA+DB binary white dwarf candidates. We have discovered extreme spectroscopic variations in one of these candidates, SDSS J084716.21+484220.40. Previous analysis failed to reproduce the optical spectrum using a single object with a homogeneous atmosphere. Our time-resolved spectroscopy reveals a double-faced white dwarf that switches between a DBA and DA spectral type over 6.5 or 8.9 hr due to varying surface abundances. We also provide time-series spectroscopy of the magnetic DBA, SDSS J085618.94+161103.6 (LB 8915), and confirm an inhomogeneous atmosphere. We employ an atmosphere model with hydrogen caps and a helium belt that yields excellent fits to our time-resolved spectra. We use the oblique rotator model to derive the system geometry for both targets. With the addition of these two objects, the emerging class of double-faced white dwarfs now consists of seven members. We summarize the properties of this new class of objects, and discuss how magnetism impacts the convective processes and leads to the formation of double-faced white dwarfs. We identify cooler versions of white dwarfs with inhomogeneous atmospheres among the cool magnetic DA white dwarf sample, where the Hαline is shallower than expected based on pure hydrogen atmosphere models. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract The discovery of pulsations in ultramassive (UM) white dwarfs (WDs) can help to probe their interiors and unveil their core composition and crystallized mass fraction through asteroseismic techniques. To date, the richest pulsating UM WD known is BPM 37093 with 8 modes detected, for which detailed asteroseismic analysis has been performed in the past. In this work, we report the discovery of 19 pulsation modes in the UM WD star WD J0135+5722, making it the richest pulsating hydrogen-atmosphere UM WD known to date. This object exhibits multiperiodic luminosity variations with periods ranging from 137 to 1345 s, typical of pulsating WDs in the ZZ Ceti instability strip, which is centered atTeff ∼ 12,000 K. We estimate the stellar mass of WD J0135+5722 by different methods, resulting inM ∼ 1.12–1.14Mif the star’s core is made of oxygen and neon orM ∼ 1.14–1.15Mif the star hosts a carbon oxygen core. Future analysis of the star periods could shed light on the core chemical composition through asteroseismology. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  3. Abstract We increase the spectroscopic completeness of the 100 pc white dwarf sample in the Sloan Digital Sky Survey footprint with 840 additional spectra. Our spectroscopy is 86% complete for white dwarfs hotter thanTeff = 5000 K, where Hαremains visible and provides reliable constraints on the atmospheric composition. We identify 2108 DA white dwarfs with pure hydrogen atmospheres, and show that ultramassive DA white dwarfs withM≥ 1.1Mare an order of magnitude less common below 10,000 K. This is consistent with a fraction of them getting stuck on the crystallization sequence due to22Ne distillation. In addition, there are no ultramassive DA white dwarfs withM≥ 1.1MandTeff≤ 6000 K in our sample, likely because Debye cooling makes them rapidly fade away. We detect a significant trend in the fraction of He atmosphere white dwarfs as a function of temperature; the fraction increases from 9% at 20,000 K to 32% at 6000 K. This provides direct evidence of convective mixing in cool DA white dwarfs. Finally, we detect a relatively tight sequence of low-mass DQ white dwarfs in color–magnitude diagrams for the first time. We discuss the implications of this tight DQ sequence, and conclude with a discussion of the future prospects from the upcoming Ultraviolet Transient Astronomy Satellite mission and the large-scale multi-fiber spectroscopic surveys. 
    more » « less
  4. Abstract We present a detailed model atmosphere analysis of massive white dwarfs withM> 0.9MandTeff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1Mwhite dwarfs to 49% for 1.2–1.3M. However, this fraction is as high as 78 7 + 4 % for 1.1–1.2Mwhite dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process. 
    more » « less
  5. Abstract Four years after the discovery of a unique DAQ white dwarf with a hydrogen-dominated and carbon-rich atmosphere, we report the discovery of four new DAQ white dwarfs, including two that were not recognized properly in the literature. We find all five DAQs in a relatively narrow mass and temperature range ofM= 1.14–1.19MandTeff= 13,000–17,000 K. In addition, at least two show photometric variations due to rapid rotation with ≈10 minute periods. All five are also kinematically old, but appear photometrically young, with estimated cooling ages of about 1 Gyr based on standard cooling tracks, and their masses are roughly twice the mass of the most common white dwarfs in the solar neighborhood. These characteristics are smoking gun signatures of white dwarf merger remnants. Comparing the DAQ sample with warm DQ white dwarfs, we demonstrate that there is a range of hydrogen abundances among the warm DQ population and that the distinction between DAQ and warm DQ white dwarfs is superficial. We discuss the potential evolutionary channels for the emergence of the DAQ subclass, suggesting that DAQ white dwarfs are trapped on the crystallization sequence and may remain there for a significant fraction of the Hubble time. 
    more » « less
  6. ABSTRACT We report the discovery of spectroscopic variations in the magnetic DBA white dwarf SDSS J091016.43+210554.2. Follow-up time-resolved spectroscopy at the Apache Point Observatory (APO) and the MMT show significant variations in the H absorption lines over a rotation period of 7.7 or 11.3 h. Unlike recent targets that show similar discrepancies in their H and He line profiles, such as GD 323 and Janus (ZTF J203349.8+322901.1), SDSS J091016.43+210554.2 is confirmed to be magnetic, with a field strength derived from Zeeman-split H and He lines of B ≈ 0.5 MG. Model fits using a H and He atmosphere with a constant abundance ratio across the surface fail to match our time-resolved spectra. On the other hand, we obtain excellent fits using magnetic atmosphere models with varying H/He surface abundance ratios. We use the oblique rotator model to fit the system geometry. The observed spectroscopic variations can be explained by a magnetic inhomogeneous atmosphere where the magnetic axis is offset from the rotation axis by β = 52°, and the inclination angle between the line of sight and the rotation axis is i = 13–16°. This magnetic white dwarf offers a unique opportunity to study the effect of the magnetic field on surface abundances. We propose a model where H is brought to the surface from the deep interior more efficiently along the magnetic field lines, thus producing H polar caps. 
    more » « less
  7. ABSTRACT We present our findings on the spectral analysis of seven magnetic white dwarfs that were presumed to be double degenerates. We obtained time-resolved spectroscopy at the Gemini Observatory to look for evidence of binarity or fast rotation. We find three of our targets have rotation periods of less than an hour based on the shifting positions of the Zeeman-split H α components: 13, 35, and 39 min, and we find one more target with a approximately an hour long period that is currently unconstrained. We use offset dipole models to determine the inclination, magnetic field strength, and dipole offset of each target. The average surface field strengths of our fast rotators vary by 1–2 MG between different spectra. In all cases, the observed absorption features are too shallow compared to our models. This could be due to extra flux from a companion for our three low-mass targets, but the majority of our sample likely requires an inhomogeneous surface composition. Including an additional magnetic white dwarf with similar properties presented in the literature, we find that five of the eight targets in this sample show field variations on minute/hour time-scales. A crystallization driven dynamo can potentially explain the magnetic fields in three of our targets with masses above 0.7 M⊙, but another mechanism is still needed to explain their rapid rotation. We suggest that rapid rotation or low-masses point to binary evolution as the likely source of magnetism in seven of these eight targets. 
    more » « less
  8. ABSTRACT We present Apache Point Observatory (APO) and Gemini time-series photometry of WD J004917.14−252556.81, an ultramassive DA white dwarf with $$T_{\rm eff} = 13\, 020$$ K and log g = 9.34. We detect variability at two significant frequencies, making J0049−2525 the most massive pulsating white dwarf currently known with M⋆ = 1.31 M⊙ (for a CO core) or 1.26 M⊙ (for an ONe core). J0049−2525 does not display any of the signatures of binary mergers, there is no evidence of magnetism, large tangential velocity, or rapid rotation. Hence, it likely formed through single star evolution and is likely to have an ONe core. Evolutionary models indicate that its interior is ≳99 per cent crystallized. Asteroseismology offers an unprecedented opportunity to probe its interior structure. However, the relatively few pulsation modes detected limit our ability to obtain robust seismic solutions. Instead, we provide several representative solutions that could explain the observed properties of this star. Extensive follow-up time-series photometry of this unique target has the potential to discover a significant number of additional pulsation modes that would help overcome the degeneracies in the asteroseismic fits, and enable us to probe the interior of an ≈1.3 M⊙ crystallized white dwarf. 
    more » « less
  9. ABSTRACT We search for merger products among the 25 most massive white dwarfs in the Montreal White Dwarf Database 100 pc sample through follow-up spectroscopy and high-cadence photometry. We find an unusually high fraction, 40 per cent, of magnetic white dwarfs among this population. In addition, we identify four outliers in transverse velocity and detect rapid rotation in five objects. Our results show that $$56^{+9}_{-10}$$ per cent of the $$M\approx 1.3\, {\rm M}_{\odot }$$ ultramassive white dwarfs form through mergers. This fraction is significantly higher than expected from the default binary population synthesis calculations using the α prescription (with αλ = 2), and provides further support for efficient orbital shrinkage, such as with low values of the common-envelope efficiency. 
    more » « less
  10. Abstract We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27M(assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength ofBd= 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators. 
    more » « less